This is an introductory chemistry course for students with an unusually strong background in chemistry. Knowledge of calculus is recommended. Emphasis is on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. The course also covers applications of basic principles to problems in metal coordination chemistry, organic chemistry, and biological chemistry.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.
Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.