Course

Handling Imbalanced Data Classification Problems

Coursera Project Network

Explore the complexities of handling imbalanced data classification problems in this 2-hour project-based course. Gain insights into understanding the business problem, dataset evaluation, and data resampling techniques like SMOTE, undersampling, and oversampling. With a focus on North America, you will learn to implement the ROC curve and adjust probability thresholds to enhance model performance.

  • Understand the business problem and dataset to choose the best evaluation metric
  • Create imbalanced data classification model using SMOTE data resampling technique
  • Compute the ROC curve and use it to adjust the probability threshold

Certificate Available ✔

Get Started / More Info
Handling Imbalanced Data Classification Problems
More Machine Learning Courses

Machine Learning

DeepLearning.AI & Stanford University

Embark on a journey into the world of machine learning with the Machine Learning Specialization. Gain a foundational understanding and practical skills to apply...

Computer Simulations

University of California, Davis

This course explores how computer simulations are used to study and develop social science theory, allowing for the exploration of hypothetical models and real-world...

Neuronale Netze und Deep Learning

DeepLearning.AI

Neuronale Netze und Deep Learning ist ein umfassender Kurs, der grundlegende Kenntnisse zu Deep Learning vermittelt und Ihnen die Fähigkeiten vermittelt, tiefe...

توقع حضور المواعيد الطبية باستخدام Python

Coursera Project Network

توقع حضور المواعيد الطبية باستخدام Python