Lecture

Shortest Paths II

The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.


Course Lectures
  • Analysis of Algorithms
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Divide and Conquer
    Erik Demaine

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Quicksort
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Order Statistics
    Erik Demaine

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Hashing I
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Hashing II
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Balanced Search Trees
    Erik Demaine

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Skip Lists
    Erik Demaine

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Competitive Analysis
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Dynamic Programming
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Greedy Algorithms (and Graphs)
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Shortest Paths I
    Erik Demaine

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Shortest Paths II
    Erik Demaine

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Shortest Paths III
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Advanced Topics 1
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Advanced Topics 2
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Advanced Topics 3
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.

  • Advanced Topics 4
    Charles E. Leiserson

    The second half of calculus looks for the distance traveled even when the speed is changing. Finding this integral is the opposite of finding the derivative. Professor Strang explains how the integral adds up little pieces to recover the total distance.