Lecture

Lattice and Trellis Codes, Part 2

Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.


Course Lectures
  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.

  • Professor Sylvia Ceyer covers crystal field theory in both the tetrahedral case and the square planar case. The discussion then moves to the spectrochemical series and strong/weak field ligands. A conversation on magnetism, both paramagnetic and diamagnetic, in transition metals concludes the lecture.